Characteristic Polynomials of Complex Random Matrix Models
نویسنده
چکیده
We calculate the expectation value of an arbitrary product of characteristic polynomials of complex random matrices and their hermitian conjugates. Using the technique of orthogonal polynomials in the complex plane our result can be written in terms of a determinant containing these polynomials and their kernel. It generalizes the known expression for hermitian matrices and it also provides a generalization of the Christoffel formula to the complex plane. The derivation we present holds for complex matrix models with a general weight function at finite-N , where N is the size of the matrix. We give some explicit examples at finite-N for specific weight functions. The characteristic polynomials in the large-N limit at weak and strong non-hermiticity follow easily and they are universal in the weak limit. We also comment on the issue of the BMN large-N limit.
منابع مشابه
Ratios of characteristic polynomials in complex matrix models
We compute correlation functions of inverse powers and ratios of characteristic polynomials for random matrix models with complex eigenvalues. Compact expressions are given in terms of orthogonal polynomials in the complex plane as well as their Cauchy transforms, generalizing previous expressions for real eigenvalues. We restrict ourselves to ratios of characteristic polynomials over their com...
متن کاملNumerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials
Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...
متن کاملOn absolute moments of characteristic polynomials of a certain class of complex random matrices
Integer moments of the spectral determinant |det(zI−W )|2 of complex random matrices W are obtained in terms of the characteristic polynomial of the Hermitian matrix WW ∗ for the class of matrices W = AU where A is a given matrix and U is random unitary. This work is motivated by studies of complex eigenvalues of random matrices and potential applications of the obtained results in this context...
متن کاملOn Permanental Polynomials of Certain Random Matrices
The paper addresses the calculation of correlation functions of permanental polynomials of matrices with random entries. By exploiting a convenient contour integral representation of the matrix permanent some explicit results are provided for several random matrix ensembles. When compared with the corresponding formulae for characteristic polynomials, our results show both striking similarities...
متن کاملDomain of attraction of normal law and zeros of random polynomials
Let$ P_{n}(x)= sum_{i=0}^{n} A_{i}x^{i}$ be a random algebraicpolynomial, where $A_{0},A_{1}, cdots $ is a sequence of independent random variables belong to the domain of attraction of the normal law. Thus $A_j$'s for $j=0,1cdots $ possesses the characteristic functions $exp {-frac{1}{2}t^{2}H_{j}(t)}$, where $H_j(t)$'s are complex slowlyvarying functions.Under the assumption that there exist ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008